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In this paper, we study the performance of two redundant disk array organizations
in a transaction processing environments and compare it to that of mirrored disk or-
ganizations. Redundant disk arrays and mirrored disks are used for providing rapid
recovery from media failures in systems requiring high availability. We examine three
different organizations: mirrored disks, data striping with rotated parity (RAID5) and
parity striping. Mirrored disks incur a 100% storage overhead. The other two organiza-
tions a-e much less costly in terms of storage requirements (10% storage overhead for a
10 disk array) but they provide lower throughput than mirrored disks. RAID5 provides
high data transfer rates by striping the data over multiple disks. It also provides better
load balancing over the disks in the array. At the same time, data striping increases
disk arm use which can lead to longer queuing delays. In OLTP environments, because
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of the nature of I/0 requests namely a large number of small size requests, disk arms
are a more valuable resource than data transfer bandwidth. Hence, parity striping was
proposed as an alternative to data striping. It provides rapid recovery from failure at
the same low storage cost without interleaving the data over multiple disks. In this
study, we use data from real applications to evaluate and compare the performance of
the above three organizations.

Keywords: Disk Arrays, Transaction Processing, Media Recovery, Performance Eval-
uation, Trace-Driven Simulation, Database Systems, Parallel I/O.

1 Introduction

Reliable storage is a necessary feature in on-line transaction processing (OLTP) systems

requiring high availability. Media failure in such systems is traditionally dealt with by

periodically generating archive copies of the database and by logging updates to the database

performed by committed transactions between archive copies into a redo log file. When a

media failure occurs, the database is reconstructed from the last copy and the log file is

used to apply all updates performed by transactions that committed after the last copy was

generated. In such a case, a media failure causes significant down time and the overhead for

recovery is quite high. For large systems, e.g., with over 50 disks, the mean time to failure

(MTTF) of the permanent storage subsystem can be less than 25 days*. Mirrored disks

have been employed to provide rapid media recovery (1]. However, disk mirroring incurs a

100% storage overhead which is prohibitive in many cases. Redundant Disk Array (RDA)

organizations [3,8] provide an alternative for maintaining reliable storage. However, even

when disk mirroring or RDAs are used, archiving and redo logging may still be necessary to

*Assuming an MTTF of 30,000 hours for each disk.
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protect the database against operator errors or system software design errors.

Chen et al. [21 compared the performance of RAIDO, RAID1, and RAID5 systemst

They used a synthetic trace made of a distribution of small requests representing transaction

processing workloads combined with a distribution of large requests representing scientific

workloads. They used actual disk measurements on an Amdahl 5890. Gray et al. [3]

proposed the parity striping organization and used some simple analytical models to derive

the minimum (zero load) response time and the throughput at 50% utilization for fixed

size requests. Their results suggest that parity striping is more appropriate than RAID5

for database and transaction processing systems. Menon and Mattson [7] analyzed the

performance of RAID5 systems in the transaction processing environment using analytical

models. They compared the performance of arrays made of different size building blocks and

studied the effect of caching.

The following section introduces the two redundant disk array organizations discussed

in this paper. Section 3 describes the traces used in our simulations. -In Section 4, we

present the experiments conducted and discuss the results. Finally, Section 5 presents some

conclusions.
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Figure 1: RAID with rotated parity on four disks.

2 Redundant Disk Arrays

2.1 Data Striping

Striped disk arrays have been proposed and implemented for increasing the transfer band-

width in high performance I/O subsystems [5,6,9, 10]. In order to allow the use of a large

number of disks in such arrays without compromising the reliability of the I/O subsystem,

redundancy is sometimes included in the form of parity information. Patterson et al. [8]

have presented several possible organizations for Redundant Arrays of Inexpensive Disks

(RAID). One interesting organization is RAID with rotated parity in which blocks of data

are interleaved across N disks while the parity of the N blocks is written on the N + P t disk.

The parity is rotated over the set of disks in order to avoid contention on the parity disk.

Figure 1 shows the array organization with four disks. The organization allows both large

(full stripe) concurrent accesses or small (individual disk) accesses. For a small write access,

the data block is read from the relevant disk and modified. To compute the new parity, the

old parity has to be read, XORed with the new data and XQRed with the old data. Then

the new data and new parity can be written back to the corresponding disks. Stonebraker

et al. [11] have advocated the use of a RAID organization to provide high availability in

database systems.
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Figure 2: Parity striping of disk arrays.

2.2 Parity Striping

Gray et al. [31 studied ways of using an architecture such as RAID in OLTP systems. They

argued that because of the nature of I/O requests in OLTP systems, namely a large number of

small accesses, it is not convenient to have several disks servicing the same request. Hence,

the organization shown in Figure 2 was proposed. It is referred to as parity striping. It

consists of reserving an area for parity on each disk and writing data sequentially on each

disk without interleaving. For a group of N + 1 disks, each disk is divided into N + 1 areas

one of these areas on each disk is reserved for parity and the other areas contain data. N

data areas from N different disks are grouped together in a parity group and their parity is

written on the parity area of the N + V" disk.

3 Workload and System Model

To evaluate the different redundant disk array organizations, we have used data from op-

erational OLIP systems, namely Tandem NonStop systems. The data were extracted from

log files generated by the Transaction Monitoring Facility (TMF) [12] during normal system
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Table 1: Disk parameters.

Max. latency 16.6 ms
Max. seek 47 ms
tracks per platter 1260
sectors per track 52
bytes per sector 512
number of platters 15

operation. The log entries contained transaction status information, before and after images

of modified data, names of accessed files and disks as well as timing information. Using the

log entries, we construct a trace of update accesses performed by each transaction before it

commits or aborts as well as information on periodic checkpoints.

Using this data, we simulate the behavior of the database buffer and the I/O subsystem.

We assume that the system is I/O bound and hence we ignore cpu processing times. The

disk parameters used in the simulations are shown in Table 1. For seek time, a square root

function is used for seek distances less than 20% of the number of cylinders. Beyond that

point, a linear function is used.

We use three different traces from three different applications. The first trace was col-

lected at a company issuing credit cards to individuals. The application traced is the end of

month processing of customer accounts. The second trace was generated during the opera-

tional test of the Stock Point Logistics Intergrated Communications Environment (SPLICE).

SPLICE is used by the US Navy Supply Systems Commands to manage stocks and relay

orders to supply centers. The third trace was collected from a test application used in TMF

software development. Table 2 shows the characteristics of the traces used.
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Table 2: Trace characteristics.

11 Trace 1 Trace 2 Trace 3

# of accesses 356730 200549 22457
duration 2hr 22min 57min 12min
# of transactions 14294 16832 8795
# of checkpoints 208 30 14
# of data disks 5 5 5

When a reference to a block that is not in the buffer occurs, the block is read into the

database buffer while another block is chosen for replacement. If the replaced block is dirty,

it has to be written to disk. The buffer replacement policy is LRU. Dirty blocks are written

to disk either by the buffer replacement algorithm or during periodic checkpoints. These

checkpoints are generated in order to reduce the amount of redo actions necessary to recover

from a ystem crash [4]. Information on the placement of checkpoints is extracted from the log

files. During periodic checkpoints, multiblock requests are issued to write back consecutive

blocks while the I/O requests initiated by buffer replacement are single block I/O's.

The log records do not provide any information on read accesses. We only use the update

accesses extracted from the log file to compare the different disk array organizations. There

is still some read I/O performed since when a block is referenced for updating and it is

not in the buffer it is read into the buffer and then updated. It is important to note that

the impact of the write requests on the performance is more important than that of read

requests because of the need to write both mirrors or to update both the data and parity

blocks whenever a write request is issued.

I/O to the log file is not included in this evaluation. The reason for this is that log files are
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usually placed on separate disks. In addition, the I/O to the log is always sequential except

during recovery operations. It is also usually synchronous which means that transaction

response time is highly dependent on fast access to the log. Thus, a pair of mirrored disks

is probably the best solution for storing the log file while the database itself can be stored

in a RAID5 or parity striping type array.

For each update access, the log records provide the disk name, the file name and the

relative sector number within the file. The physical address of the first sector of a file is not

available from the log. Therefore, a policy for allocating physical disk space to files is needed.

In our experiments we allocate disk space using fixed size extents. The extent size used in

our simulations is 1MB. At the beginning of each simulation run, the first extent allocated

in each disk is chosen at random. When a new extent is needed, the next available extent

is allocated. We assume that the disks are 50% full, and thus the next extent is considered

available with probability 0.5.

We did not change the assignment of files to disks in the case of mirrored disks and

parity striping. For parity striping it was assumed that enough space was available on the

disks to store the parity. The number of disks in the array is assumed to be equal to the

number of disks accessed in the trace. Usually an extra disk is needed so that space for the

parity can be allocated on each disk. However, we did not add a disk because that would

have required remapping the data over more disks and we wanted to preserve the original

mapping obtained from the trace. The number of disks is five for all three traces. For the

RAID5 organization the data of the five logical disks accessed in each trace are striped over
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five physical disks in a straight forward fashion. It is also assumed in this case that there is

enough space on the disks to store the files referenced in the trace and the parity information

so no extra disks are used. This way both RAID5 and parity striping organizations have the

same number of disks while the mirrored disk organization has twice as many disks. The

striping unit used for the RAID5 system is one block.

The capacity of the buffer in terms of number of blocks is denoted by B. In our experi-

ments B ranges from 50 to 5000 blocks. The block size used is 4KB.

4 Experiments

In a first stage we use the timestamps included in the log file to determine the arrival rates

of the update accesses. The values of those timestamps are dependent on the characteristics

of the system on which the data was collected and are influenced by the response time and

bandwidth of its I/O subsystem. However, they still provide us with an approximation of

the rate at which I/O is issued in a real application. But in this case, a throughput measure

is not significant because there are idle periods in the trace which means that a slower I/O

subsystem organization can catch up with a faster one during the idle periods. Hence, the

execution time of the trace, and therefore the throughput are not good comparison measures.

To compare the three organizations, we use a different measure which reflects the cost

of executing the I/O load of the application on each disk organization. This cost measure

is the total disk utilization, i.e., the combined dish usage times for all the disks in a given

organization. Table 3 contains the results of this experiment. The I/O cost is measured
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in seconds and the average response time in milliseconds. The results are shown for three

different values of the buffer size B = 50, B = 500, and B = 5000. The first two rows of the

table contain the results for the first trace (T1), the next two rows correspond to the second

trace (T2) and the last two rows to the third trace (T3). Mirrored systems have much lower

I/O cost than RAID5 and parity striping. This is mainly due to the fact that in the last

two systems an extra rotation is needed to read the old data and old parity for each update

access. The reason the I/O cost for parity striping is less than that of RAID5 is because the

seek distances in the RAID5 case are longer. This is due to the fact that the logical disks

are mapped to the RAID5 array in such a way that when a request for data from a given

logical disk follows a request for a different logical disk a large number of cylinders have to

be traversed, while in the case of parity striping logical disks and physical disks are the same

and therefore consecutive requests to different logical disks do not necessarily cause large

disk arm movements. I/O response times are also shorter for mirrored systems than for the

two disk array organizations because of the extra rotation required in disk arrays to read

the old data and old parity and also because the mirrored disk system has more disk arms

(twice as many), hence less queuing delays than in the disk array systems. Response times

for reads are also shorter for mirrored disks since the disk in the mirrored pair that has the

shorter seek distance to the data is always used to perform the read. As far as comparing

the response times of RAID5 and parity striping, there are two phenomena in effect. On one

hand, the service time at each disk (seek + rotation + transfer) is longer for RAID5 because

of the larger arm movements mentioned above. On the other hand there is less queuing in
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Table 3: Results using timing info-mation provided in the log.

ii B = 50 11 = 500 if B = 5000 1
_ Mir I Raid ParStr Mir Raid ] ParStr M Mir] Raid ParStr

ITlT1/0cost 11902 4493 13913 135413635 248911105812845119311
L f resp time 11 27.2 1 59.7 1 61.9 11 229.31 894.8 1 1055.8 11 262.2 1 957.6 1159.9 I

I2 /0 cost 1167851 15289 11304! 11 21 19614 18230 1 184 13376 1 2421
resp time 11 20.1 1 43.4 1 38.9 1 35.3 1 157.91 160.91 506.3 1 4376.2 1 4265.6

I T /0 cost 244 1638 1526 11 7.2 1 11.8 110.8 11 7.2 111.8 10.8I resp time 11 19.0 148.3 1 40.6 11 21.6 49.3 148.6 II 21.6 149.3 48.6I

RAID5 systems because of better load balancing and therefore better utilization of the disks

in the array.

The inflated numbers for the average response time that appear in the table for B = 500

and B = 5000 for the first two traces are due to the long queuing delays encountered when

checkpoints are generated. In our simulation, all the I/O requests performed by a given

checkpoint are issued at the same times. For a bigger database buffer, the checkpoint will

generate more concurrent I/O and thus cause more queuing. Checkpointing I/O is done

asynchronously and therefore long response times for this type of I/O is not a problem.

However, normal transaction processing I/O (due to buffer replacement) is synchronous

and has to meet stringent response time requirements. For larger B, the contribution of the

checkpointing I/O to the average response time becomes much higher because there are more

I/O's per checkpoint and their response time is longer while the amouat of replacement I/O

becomes smaller.

In a second experiment, we use a different approach to apply the traces to the disk

4The log file contains one record per checkpoint indicating the checkpoint has been completed.
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organizbtions. We ignore the timestamps provided in the log. Instead we try to achieve a

given average response time by controlling the number of I/O's allowed to enter the system.

Then we measure the corresponding throughput and compare the throughput of different

organizations for the same response time. Figure 3 shows the throughput vs. average

response time curves for the three traces for three different buffer sizes. The main result

is that under light load, parity striping performs better than RAID5 because of its shorter

average seek times and the absence of any significant queuing delays. However, at higher

loads, when queuirg delays become more significant, RAID5 performs better mainly because

of its load balancing advantage. The negative effects of striping in transaction processing

environments outlined in [31, such as using many disk arms to service a single request nd

thus causing more queuing, do not materialize in this case because most requests are for

single blocks and striping is done at the block level. The throughput of mirrored disks is

much higher than that of the other two organizations because they have twice as many disk

arms to service the requests and do not incur the overhead of the extra rotation for reading

the old parity and old data. The "knee" in the curve occurs earlier for mirrors than for

RAID5 because RAID5 systems are more load balanced and saturation occurs at a higher

load.

As the size of the buffer B increases, the gap between the mirror curve and the RAID5

curve narrows while the gap between RAID5 and parity striping widens. This can be

explained by the fact that when the working set of the application fits entirely in the

buffer, most of the I/O is performed during changes in locality when a new more or less
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contiguous area of one of the disks is brought into the buffer. Therefore, service time

(seek+rotation+transfer) of the I/O becomes shorter while queuing time becomes a more

important fraction of the total response time. RAID5 performance improves in this kind of

an environment because of its better load balancing while Mirroring and parity striping do

not do as well. The change in behavior occurs somewhere between B = 50 and B = 500 for

the first trace and somewhere between B = 500 and B = 5000 for the second trace. The

third trace is much shorter than the other two and does not exercise its database as much.

The change in the shape of the curve for mirrors for B = 500 and B = 5000 for the last

trace is due to the fact that the hit ratio in the buffer becomes very close to one (0.987

for B = 500) which means that practically all the I/O is checkpointing I/O which exhibits

different behavior than replacement I/O. The set of blocks that get modified between check-

points is such that increases in throughput and better disk utilization cannot be obtained

in the case of mirrors unless a large number of I/O are allowed into the system at the same

time. RAID5, however, does not suffer from that problem because it stripes the data over

all the disks and keeps them all busy.

The above evaluation does not account for the fact that mirrored disk systems use twice

as many disks. To get a more fair comparison we look at the throughput per disk. This is

done by dividing the throughput by the number of disks in the I/O subsystem organization.

In Figure 4, the throughput per disk versus the average response time is plotted. We see

that for large enough buffer size, RAID5 throughput per disk is higher than that of mirrored

disks except at very light loads.
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5 Conclusions

We have used data from operational transaction processing systems to evaluate the perfor-

mance of two redundant disk array organizations and compare them to mirrored disks. We

found that in an environment dominated by single block, I/O RAID5 provides generally

better throughput than parity striping mainly because of its load balancing effect. Only

under light load conditions does parity striping perform better than RAID5. Mirrored disks

still provide significantly higher throughput but at a much higher storage cost. The gap in

performance between mirrored disks and the disk array organizations narrows as buffer size

increases.
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